Solving the Frustrated Spherical Model with q-Polynomials

نویسنده

  • Andrea Cappelli
چکیده

We analyse the Spherical Model with frustration induced by an external gauge field. In infinite dimensions, this has been recently mapped onto a problem of qdeformed oscillators, whose real parameter q measures the frustration. We find the analytic solution of this model by suitably representing the q-oscillator algebra with q-Hermite polynomials. We also present a related Matrix Model which possesses the same diagrammatic expansion in the planar approximation. Its interaction potential is oscillating at infinity with period log(q), and may lead to interesting metastability phenomena beyond the planar approximation. The Spherical Model is similarly q-periodic, but does not exhibit such phenomena: actually its lowtemperature phase is not glassy and depends smoothly on q.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of the spread of infectious diseases mathematical model based on shifted Bernstein polynomials

The Volterra delay integral equations have numerous applications in various branches of science, including biology, ecology, physics and modeling of engineering and natural sciences. In many cases, it is difficult to obtain analytical solutions of these equations. So, numerical methods as an efficient approximation method for solving Volterra delay integral equations are of interest to many res...

متن کامل

Recurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials

Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$‎ ‎x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x)‎,$$ ‎we find the coefficients $b_{i,j}^{(p,q,ell‎ ,‎,r)}$ in the expansion‎ $$‎ ‎x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell‎ ‎}y^{r}f^{(p,q)}(x,y) =sumli...

متن کامل

Modified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)

The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...

متن کامل

Operational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients

In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...

متن کامل

Askey-Wilson Polynomials as Zonal Spherical Functions on the SU(2) Quantum Group

On the SU(2) quantum group the notion of (zonal) spherical element is generalized by considering left and right invariance in the infinitesimal sense with respect to twisted primitive elements of the sl(2) quantized universal enveloping algebra. The resulting spherical elements belonging to irreducible representations of quantum SU(2) turn out to be expressible as a two-parameter family of Aske...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997